体育学刊
投稿指南 | 期刊数据 | 期刊全文 | 文章查询 | 下载专区 | 体育茶座   订户之窗 |  学术百家  |  体育网刊 |

2024年
第1期 第2期 第3期
第4期
2023年
第1期 第2期 第3期
第4期 第5期 第6期
2022年
第1期 第2期 第3期
第4期 第5期 第6期
2021年
第1期 第2期 第3期
第4期 第5期 第6期
2020年
第1期 第2期 第3期
第4期 第5期 第6期
2019年
第1期 第2期 第3期
第4期 第5期 第6期
2018年
第1期 第2期 第3期
第4期 第5期 第6期
2017年
第1期 第2期 第3期
第4期 第5期 第6期
2016年
第1期 第2期 第3期
第4期 第5期 第6期
2015年
第1期 第2期 第3期
第4期 第5期 第6期
2014年
第1期 第2期 第3期
第4期 第5期 第6期
2013年
第1期 第2期 第3期
第4期 第5期 第6期
2012年
第1期 第2期 第3期
第4期 第5期 第6期
2011年
第1期 第2期 第3期
第4期 第5期 第6期
2010年
第1期 第2期 第3期
第4期 第5期 第6期
第7期 第8期 第9期
第10期 第11期 第12期
2009年
第1期 第2期 第3期
第4期 第5期 第6期
第7期 第8期 第9期
第10期 第11期 第12期
2008年
第1期 第2期 第3期
第4期 第5期 第6期
第7期 第8期 第9期
第10期 第11期 第12期
2007年
第1期 第2期 第3期
第4期 第5期 第6期
第7期 第8期 第9期
2006年
第1期 第2期 第3期
第4期 第5期 第6期
2005年
第1期 第2期 第3期
第4期 第5期 第6期
2004年
第1期 第2期 第3期
第4期 第5期 第6期
2003年
第1期 第2期 第3期
第4期 第5期 第6期
2002年
第1期 第2期 第3期
第4期 第5期 第6期
2001年
第1期 第2期 第3期
第4期 第5期 第6期
: : 期刊全文 : :
未安装PDF浏览器的用户请下载
 
有氧运动对慢性心力衰竭大鼠病理性心脏肥大的影响
施曼莉1,李晓霞2
浏览次数 2693  

(1.重庆师范大学 体育学院,重庆  401331;2.山东体育学院,济南  250102)

摘      要:探讨有氧运动对慢性心力衰竭大鼠病理性心脏肥大的影响及可能机制,为心衰的运动康复提供理论依据。将雄性Wistar大鼠结扎冠状动脉建立心梗后慢性心衰模型,术后随机分为假手术对照组(SC组)、假手术运动组(SE组)、心衰对照组(HC组)和心衰运动组(HE组)。假手术运动组和心衰运动组进行10周跑台训练,假手术对照组和心衰对照组保持安静状态。利用跑台递增负荷运动实验测定大鼠的运动耐力(最大跑速和力竭时间);心脏超声检测心脏结构与功能参数(包括左室舒张期内径、左室收缩期内径、左室舒张期前壁厚度、左室收缩期前壁厚度、左室舒张期后壁厚度、左室收缩期后壁厚度、左室缩短分数和左室射血分数);左室导管法测定血流动力学参数(包括左室收缩期压力、左室舒张末期压力、左心室压力最大上升速率和左室压力最大下降速率);称量体重后取心脏并测定左室重量、右室重量,计算左室质量指数;利用HE和Masson染色法进行组织病理学观察并获得心肌细胞横截面积和胶原容积分数;实时荧光定量PCR 检测心肌α-肌球蛋白重链、β-肌球蛋白重链、心纳素、肌质网Ca2+-ATP酶、I型胶原和III型胶原mRNA表达量;Western Blot法检测心肌半胱氨酸-天冬氨酸蛋白酶3、钙调磷酸酶催化亚基Aβ、活化T细胞核因子3、磷脂酰肌醇-3激酶催化亚基p110α和磷酸化Akt蛋白表达量。结果显示:(1)与假手术对照组比较,假手术运动组BW和LVEDP降低(P<0.05),最大跑速、力竭时间、LVW、LVMI、LVIDd、LVFS、LVEF、LVSP、±dp/dtmax、CSA,α-MHC、SERCA2a mRNA以及PI3K(p110α)和p-Akt蛋白表达量升高(P<0.05),心衰对照组最大跑速、力竭时间、BW、LVIDd、LVFS、LVEF、LVSP、±dp/dtmax以及α-MHC和SERCA2a mRNA表达水平降低(P<0.05),LVW、LVMI、LVAWDd、LVAWDs、LVPWDd、LVPWDs、LVEDP、CSA、CVF、ANF、β-MHC、Col-I和Col-III mRNA以及CaNAβ、NFAT3和Caspase-3蛋白表达量升高(P<0.05);(2)与心衰对照组比较,心衰运动组最大跑速、力竭时间、LVW、LVMI、LVIDd、LVFS、LVEF、LVSP、±dp/dtmax、CSA,α-MHC、SERCA2a mRNA以及PI3K(p110α)和p-Akt蛋白表达水平升高(P<0.05),LVEDP、CVF,ANF、β-MHC、Col-I和Col-III mRNA以及CaNAβ、NFAT3和Caspase-3蛋白表达量降低(P<0.05)。结果表明:长期有氧运动促使心衰大鼠心脏由病理性肥大向生理性肥大转变,左室重塑得到抑制,心功能和运动耐力改善,其机制与运动抑制CaN-NFAT信号通路并激活PI3K-Akt信号途径进而下调胚胎基因表达、上调收缩蛋白表达、减轻心肌纤维化和抑制心肌细胞凋亡有关。
关  键  词:运动医学;有氧运动;慢性心力衰竭;心脏肥大;大鼠
中图分类号:G804.5    文献标志码:A    文章编号:1006-7116(2015)03-0127-08

Effects of aerobic exercise on the pathological cardiac hypertrophy of rats suffering chronic heart failure
SHI Man-li1,LI Xiao-xia2

(1.School of Physical Education,Chongqing Normal University,Chongqing 401331,China;2.Shandong Sport University,Jinan 250102,China)

Abstract: In order to probe into the effects of aerobic exercise on the pathological cardiac hypertrophy of rats suf-fering chronic heart failure and the possible mechanism, and to provide a theoretical criterion for exercise recovery from heart failure, the authors established a chronic heart failure model by ligating the coronary artery of Wistar rats, randomly divided the rats into a sham operation control group (SC), a sham operation exercise group (SE), a heart failure control group (HC) and a heart failure exercise group (HE) after operation, let the rats in groups SE and HE carry out 10-week treadmill training, let the rats in groups SC and HC maintain a calm condition, measured the rats’ exercise endurance (maximum running speed and time to exhaustion) by utilizing the experiment of exercise whose load was gradually increased via the treadmill, by means of echocardiogram, measured cardiac structure and function parameters, which included left ventricular internal diameter during diastole (LVIDd), left ventricular in-ternal diameter during systole (LVIDs), left ventricular anterior wall diameter during diastole (LVAWDd), left ven-tricular anterior wall diameter during systole (LVAWDs), left ventricular posterior wall diameter during diastole (LVPWDd), left ventricular posterior wall diameter during systole (LVPWDs), left ventricular fractional shortening (LVFS) and left ventricular ejection fraction (LVEF), by means of pressure transducer inserted retrograde in left ventricle, measured hemodynamic parameters, which included left ventricular systolic pressure (LVSP), left ven-tricular end-diastolic pressure (LVEDP), maximal developing rate of left ventricular pressure (+dp/dtmax) and maximal descending rate of left ventricular pressure (-dp/dtmax), weighed the rats, then took out their heat, meas-ured left ventricular weight (LVW) and right ventricular weight (RVW), calculated left ventricular mass index (LVMI), by means of histopathological detection (HE) and Masson staining, carried out histopathological observa-tion and acquired myocardial cross-sectional area (CSA) and collagen volume fraction (CVF), by means of real-time fluorescent quantitation PCR technique, measured mRNA expression level of myocardial α-myosin heavy chain (α-MHC), β-myosin heavy chain (β-MHC), atrial natriuretic factor (ANF), sarcoplasmic endoplasmic reticulum Ca2+-ATPase (SERCA2a), collagen type I (Col-I) and collagen type III (Col-III), by means of Western Blot tech-nique, measured protein expression level of myocardial cysteine aspartate protease-3 (Caspase-3), calcineurin (CaN) Aβ catalytic subunit (CaNAβ), nuclear factor of activation T cell 3 (NFAT3), phosphatidylinositol 3-kinase (PI3K) p110α catalytic subunit [PI3K(p110α)] and phospho-Akt (p-Akt). Results: (1) as compared with the rats in group SC, the BW and LVEDP of the rats in group SE decreased (P<0.05), their maximum running speed, time to exhaus-tion, LVW, LVMI, LVIDd, LVFS, LVEF, LVSP, ±dp/dtmax, CSA, mRNA of α-MHC and SERCA2a, protein of PI3K(p110α) and p-Akt increased (P<0.05); the maximum running speed, time ot exhaustion, BW, LVIDd, LVFS, LVEF, LVSP, ±dp/dtmax, mRNA of α-MHC and SERCA2a of the rats in group HC decreased (P<0.05), their LVW, LVMI, LVAWDd, LVAWDs, LVPWDd, LVPWDs, LVEDP, CSA, CVF, mRNA of ANF, β-MHC, Col-I and Col-III, protein of CaNAβ, NFAT3 and Caspase-3 increased (P<0.05); (2) as compared with the rats in group HC, the maximum running speed, time to exhaustion, LVW, LVMI, LVIDd, LVFS, LVEF, LVSP, ±dp/dtmax, CSA, mRNA of α-MHC and SERCA2a of the rats in group HE increased (P<0.05), their LVEDP, CVF, mRNA of ANF, β-MHC, Col-I and Col-III, protein of CaNAβ, NFAT3 and Caspase-3 decreased (P<0.05). The said results indicated the fol-lowings: long-term aerobic exercise promoted the changing of the heart of the rats suffering heart failure from pathological hypertrophy to physiological hypertrophy, restrained left ventricle remodeling, and improved cardiac functions and exercise endurance, whose mechanism was related to that exercise restrained CaN-NFAT signal path-way and activated PI3K-Akt signal pathway, and then down-regulated fetal gene expression, up-regulated contrac-tile protein, alleviated myocardial fibrosis and restrained cardiomyocyte apoptosis.
Key words: sports medicine;aerobic exercise;chronic heart failure cardiac hypertrophy;rat


关闭窗口
你是第 39193262 位访问者
版权所有:体育学刊  粤网站备案号:粤ICP备17133455号  技术支持:网天科技
地址:广东广州石牌华南师范大学学报楼4楼         邮编:510631
编辑部电话:020-85211412  传真:020-85210269  邮箱:tyxk@scnu.edu.cn