(1.School of Sports Science,Hefei Normal University,Hefei 230601,China;2.Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;3.Sports Science Research Institute of Guangdong,Guangzhou 510663,China;4.Department of Physical Education,Tsinghua University,Beijing 100084,China;5.Liaoning Province Military Sports School,Dalian 116000,China) Abstract: By using a racing kayak sports biomechanical test and analysis system, the authors run some sports technical tests on 11 twin scull female kayakers of the national kayak team, and revealed their sports technical differences during single kayaker training and multi-kayaker kayak training, and the following findings: 1) during multi-kayaker kayak train-ing, the kayakers’ medium and low frequency scull pulling rhythm was on the low side, while their high frequency scull pulling rhythm was on the high side; there was a big difference in their scull pulling power mode when they were trained in different ways, which, to a certain extent, reflected that their sports technical instability during training would lower their scull pulling efficiency to a great extent; 2) a too high descending coefficient was one of the reasons for the unsmooth rear arc of the rowing power curve; 3) serious slipping or empty rowing is currently a serious problem existing among the kayakers of the national kayak team; they should focus on water catching training in order to solve the problem of sculls slipping during their cutting into the water, as well as torso and arm driving efficiency training in order to solve the problem of sculls slipping during their coming out of the water; 4) too deep scull pulling will usually cause the re-ducing of the sculls’ horizontal component force, the lowering of scull pulling efficiency, also a too big vertical scull angle when the sculls start to come out of the water, hence, as the sculls come out of the water, the kayaker have to press the sculls while pulling them, which makes scull pulling force uneven, forms a second power exerting curve, and tends to cause sculls slipping during their coming out of the water; this problem can be solved by the training of hori-zontal scull pulling at a depth somewhere between -3° and -6°; 5) commonly the kayakers of the national kayak team had the following problem: their torso and arm driving amplitudes were obviously different under different rowing fre-quencies; they can solve this problem by carrying out pure scull pulling training on their torsos and arms. Key words: competition and training;single kayaker training;multi-kayaker kayak training;kayak technology;slipping;rowing efficiency |